Life and Times of a Cellular Bleb

  • Mulay S
  • Desai J
  • Kumar S
 et al. 
  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

Blebs are spherical cellular protrusions that occur in many physiological situations. Two distinct phases make up the life of a bleb, each of which have their own biology and physics: expansion, which lasts ∼30 s, and retraction, which lasts ∼2 min. We investigate these phases using optical microscopy and simple theoretical concepts, seeking information on blebbing itself, and on cytomechanics in general. We show that bleb nucleation depends on pressure, membrane-cortex adhesion energy, and membrane tension, and test this experimentally. Bleb growth occurs through a combination of bulk flow of lipids and delamination from the cell cortex via the formation and propagation of tears. In extreme cases, this can give rise to a traveling wave around the cell periphery, known as “circus movement.” When growth stalls, an actin cortex reforms under the bleb membrane, and retraction starts, driven by myosin-II. Using flicker spectroscopy, we find that retracting blebs are fivefold more rigid than expanding blebs, an increase entirely explained by the properties of the newly formed cortical actin mesh. Finally, using artificially nucleated blebs as pressure sensors, we show that cells rounded up in mitosis possess a substantial intracellular pressure.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Authors

  • Shrikant R. Mulay

  • Jyaysi Desai

  • Santhosh V. Kumar

  • Jonathan N. Eberhard

  • Dana Thomasova

  • Simone Romoli

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free