Lipid peroxidation products and antioxidants in human disease

334Citations
Citations of this article
163Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Lipid peroxidation (LPO) is a free radical-related process that in biologic systems may occur under enzymatic control, e.g., for the generation of lipid-derived inflammatory mediators, or nonenzymatically. This latter form is associated mostly with cellular damage as a result of oxidative stress, which also involves cellular antioxidants in this process. This article focuses on the relevance of two LPO products, malondialdehyde (MDA) and 4-hydroxynonenal (HNE), to the pathophysiology of human disease. The former has been studied in human serum samples of hepatitis C virus-infected adults and human immunodeficiency virus-infected children. In these two cases it is shown that the specific assay of serum MDA is useful for the clinical management of these patients. The presence of MDA in subretinal fluid of patients with retinal detachment suggests the involvement of oxidative stress in this process. Moreover, we were able to report the dependence of this involvement on the degree of myopia in these patients. The assay of MDA contents in the peripheral nerves of rats fed a chronic alcohol-containing diet or diabetic mice also confirms the pathophysiologic role of oxidative stress in these experimental models. In these two cases, associated with an increase in tissue LPO products content, we detected a decrease of glutathione peroxidase (GSHPx) activity in peripheral nerve, among other modifications. We have demonstrated that in vitro HNE is able to inhibit GSHPx activity in an apparent competitive manner, and that glutathione may partially protect and/or prevent this inactivation. The accumulation of LPO products in the brain of patients with Alzheimer's disease has also been described, and it is on the basis of this observation that we have tried to elucidate the role of oxidative stress and cellular antioxidants in β-amyloid-induced apoptotic cell death of rat embryo neurons. Finally, we discuss the possible role of the observed vascular effects of HNE on human arteries.

Cite

CITATION STYLE

APA

Romero, F. J., Bosch-Morell, F., Romero, M. J., Jareño, E. J., Romero, B., Marín, N., & Romá, J. (1998). Lipid peroxidation products and antioxidants in human disease. In Environmental Health Perspectives (Vol. 106, pp. 1229–1234). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.98106s51229

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free