Local Regression and Likelihood

  • Wand M
N/ACitations
Citations of this article
108Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This book, and the associated software, have grown out of the author’s work in the field of local regression over the past several years. The book is designed to be useful for both theoretical work and in applications. Most chapters contain distinct sections introducing methodology, computing and practice, and theoretical results. The methodological and practice sections should be accessible to readers with a sound background in statistical methods and in particular regression, for example at the level of Draper and Smith (1981). The theoretical sections require a greater understanding of calculus, matrix algebra and real analysis, generally at the level found in advanced undergraduate courses. Applications are given from a wide variety of fields, ranging from actuarial science to sports. The extent, and relevance, of early work in smoothing is not widely appreciated, even within the research community. Chapter 1 attempts to redress the problem. Many ideas that are central to modern work on smoothing: local polynomials, the bias-variance trade-off, equivalent kernels, likelihood models and optimality results can be found in literature dating to the late nineteenth and early twentieth centuries. The core methodology of this book appears in Chapters 2 through 5. These chapters introduce the local regression method in univariate and multivariate settings, and extensions to local likelihood and density estimation. Basic theoretical results and diagnostic tools such as cross validation are introduced along the way. Examples illustrate the implementation of the methods using the locfit software. The remaining chapters discuss a variety of applications and advanced topics: classification, survival data, bandwidth selection issues, computa- tion and asymptotic theory. Largely, these chapters are independent of each other, so the reader can pick those of most interest. Most chapters include a short set of exercises. These include theoretical results; details of proofs; extensions of the methodology; some data analysis examples and a few research problems. But the real test for the methods is whether they provide useful answers in applications. The best exercise for every chapter is to find datasets of interest, and try the methods out! The literature on mathematical aspects of smoothing is extensive, and coverage is necessarily selective. I attempt to present results that are of most direct practical relevance. For example, theoretical motivation for standard error approximations and confidence bands is important; the reader should eventually want to know precisely what the error estimates represent, rather than simply asuming software reports the right answers (this applies to any model and software; not just local regression and locfit!). On the other hand, asymptotic methods for boundary correction receive no coverage, since local regression provides a simpler, more intuitive and more general approach to achieve the same result. Along with the theory, we also attempt to introduce understanding of the results, along with their relevance. Examples of this include the discussion of non-identifiability of derivatives (Section 6.1) and the problem of bias estimation for confidence bands and bandwidth selectors (Chapters 9 and 10).

Cite

CITATION STYLE

APA

Wand, M. P. (2001). Local Regression and Likelihood. Journal of the American Statistical Association, 96(453), 339–355. https://doi.org/10.1198/jasa.2001.s373

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free