Logistic Stick-Breaking Process

  • Ren L
  • Du L
  • Carin L
 et al. 
  • 69

    Readers

    Mendeley users who have this article in their library.
  • 31

    Citations

    Citations of this article.

Abstract

A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general spatially-or temporally-dependent data, imposing the belief that proximate data are more likely to be clustered together. The sticks in the LSBP are realized via multiple logistic regression func-tions, with shrinkage priors employed to favor contiguous and spatially localized segments. The LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and comparisons are made to related techniques in the literature. Experimental analysis is performed for audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP yields generally homogeneous segments with sharp boundaries.

Author-supplied keywords

  • Bayesian
  • dependent
  • hierarchical models
  • nonparametric
  • segmentation

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Lu Ren

  • Lan Du

  • Lawrence Carin

  • David B Dunson

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free