Skip to content
Journal article

Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland

Häkkinen S, Äijälä M, Lehtipalo K, Junninen H, Backman J, Virkkula A, Nieminen T, Vestenius M, Hakola H, Ehn M, Worsnop D, Kulmala M, Petäjä T, Riipinen I ...see all

Atmospheric Chemistry and Physics, vol. 12, issue 22 (2012) pp. 10771-10786

  • 31

    Readers

    Mendeley users who have this article in their library.
  • 17

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiala, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 degrees C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 degrees C to 280 degrees C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm(-3)). On average 19% of the total aerosol mass remained in the particulate phase at 280 degrees C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 degrees C, but could not explain it completely: most of the time a notable fraction of this nonvolatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 degrees C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 degrees C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 degrees C) fraction of aerosol mass.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below