Magnetic resonance imaging detects and predicts early brain injury after subarachnoid hemorrhage in a canine experimental model

N/ACitations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The canine double hemorrhage model is an established model to study cerebral vasospasm, the late sequelae of subarachnoid hemorrhage (SAH). The present study uses magnetic resonance imaging (MRI) to examine the recently reported early brain injury after SAH. Double hemorrhage SAH modeling was obtained by injecting 0.5 mL/kg of autologous arterial blood into the cisterna magna of five adult mongrel dogs on day 0 and day 2, followed by imaging at day 2 and day 7 using a 4.7-Tesla (T) scanner. White matter (WM) showed a remarkable increase in T2 values at day 2 which resolved by day 7, whereas gray matter (GM) T2 values did not resolve. The apparent diffusion coefficient (ADC) values progressively increased in both WM and GM after SAH, suggestive of a transition from vasogenic to cytotoxic edema. Ventricular volume also increased dramatically. Prominent neuronal injury with Nissl's staining was seen in the cortical GM and in the periventricular tissue. Multimodal MRI reveals acute changes in the brain after SAH and can be used to non-invasively study early brain injury and normal pressure hydrocephalus post-SAH. MR can also predict tissue histopathology and may be useful for assessing pharmacological treatments designed to ameliorate SAH. © 2008 Mary Ann Liebert, Inc.

Cite

CITATION STYLE

APA

Jadhav, V., Sugawara, T., Zhang, J., Jacobson, P., & Obenaus, A. (2008). Magnetic resonance imaging detects and predicts early brain injury after subarachnoid hemorrhage in a canine experimental model. Journal of Neurotrauma, 25(9), 1099–1106. https://doi.org/10.1089/neu.2008.0518

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free