Mapped overland distance of paleotsunami high-velocity inundation in back-barrier wetlands of the central Cascadia margin, U.S.A

30Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Investigations of back-barrier, open-coastal plain settings have been used to establish minimum inundation distances of prehistoric tsunamis produced by great subduction zone earthquakes in the central Cascadia margin. Distinctive sand sheets were characterized at four localities within the central Cascadia margin, a shoreline distance of about 250 km. The sand sheets vary in thickness from 0.2 to 25 cm. They thin in the landward direction and consist of well-sorted beach sand that fines upsection. Many of the sand sheets include capping layers of organic-rich detritus, as well as assimilated mud rip-up clasts and soil litter. Marine diatoms and bromine (i.e., marine tracers) were used to confirm marine surge origins for the anomalous sand sheets. Radiocarbon dating of the sand sheets demonstrates correspondence with reported great Cascadia earthquake events at 0.3, ∼1.1, ∼1.3, ∼1.7, and ∼2.5 Ka. One sand sheet mapped at all four localities is dated at 600-950 calibrated radiocarbon years before present. This interpreted paleotsunami event does not correspond to a central Cascadia rupture, so it is tentatively assigned to a far-field source. Minimum overland inundation distances of the near field (Cascadia tsunami) at the four studyl localities range from 0.3 to 1.3 km, with a mean inundation for all sand sheets of 0.5 km. © 2006 by The University of Chicago. All rights reserved.

Cite

CITATION STYLE

APA

Schlichting, R. B., & Peterson, C. D. (2006). Mapped overland distance of paleotsunami high-velocity inundation in back-barrier wetlands of the central Cascadia margin, U.S.A. Journal of Geology, 114(5), 577–592. https://doi.org/10.1086/506164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free