A mathematical model for the freezing process in biological tissue

  • Rubinsky B
  • Pegg D
  • 20

    Readers

    Mendeley users who have this article in their library.
  • 105

    Citations

    Citations of this article.

Abstract

A mathematical model has been developed to study the process of freezing in biological organs. The model consists of a repetitive unit structure comprising a cylinder of tissue with an axial blood vessel (Krogh cylinder) and it is analysed by the methods of irreversible thermodynamics. The mathematical simulation of the freezing process in liver tissue compares remarkably well with experimental data on the structure of tissue frozen under controlled thermal conditions and the response of liver cells to changes in cooling rate. The study also supports the proposal that the damage mechanism responsible for the lack of success in attempts to preserve tissue in a frozen state, under conditions in which cells in suspension survive freezing, is direct mechanical damage caused by the formation of ice in the vascular system.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free