Journal article

Mean shift: a robust approach toward feature space analysis

Comanicu D, Meer P ...see all

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, issue 5 (2002) pp. 603-619

  • 1

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.
Sign in to save reference

Abstract

A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links

Authors

  • D Comanicu

  • P. Meer

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free