Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries

130Citations
Citations of this article
116Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Lithium difluoro(oxalato)borate (LiDFOB) with one oxalate moiety bonded to a central boron core was employed as a salt-type additive to enhance the interfacial stabilities of high-voltage Li-rich cathodes and graphite anodes. Our investigation revealed that the LiDFOB additive modified the surface film on the electrodes and effectively restrained degradation of the cycling performance of the electrodes. Investigation of the surface chemistries of the electrodes confirmed that LiDFOB produces a LiF-less surface film on the Li-rich cathode and a LiF-rich surface film on the graphite anode. Moreover, the use of 1% LiDFOB drastically improved the rate capabilities of Li-rich cathodes and graphite anodes. Within 100 cycles at a rate of C/2 at 25 °C, only 45.8% of the initial discharge capacity of a high-voltage Li-rich/graphite full cell was delivered in the baseline electrolyte, while the LiDFOB-containing electrolyte retained 82.7%.

Cite

CITATION STYLE

APA

Cha, J., Han, J. G., Hwang, J., Cho, J., & Choi, N. S. (2017). Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. Journal of Power Sources, 357, 97–106. https://doi.org/10.1016/j.jpowsour.2017.04.094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free