Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation

  • Luzón-Toro B
  • de la Torre E
  • Delgado A
 et al. 
  • 50


    Mendeley users who have this article in their library.
  • 82


    Citations of this article.


Pathogenic mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant and certain cases of sporadic Parkinson's disease (PD). The G2019S substitution in LRRK2 is the most common genetic determinant of PD identified so far, and maps to a specific region of the kinase domain called the activation segment. Here, we show that autophosphorylation of LRRK2 is an intermolecular reaction and targets two residues within the activation segment. The prominent pathogenic G2019S mutation in LRRK2 results in altered autophosphorylation, and increased autophosphorylation and substrate phosphorylation, through a process that seems to involve reorganization of the activation segment. Our results suggest a molecular mechanistic explanation for how the G2019S mutation enhances the catalytic activity of LRRK2, thereby leading to pathogenicity. These findings have important implications for therapeutic strategies in PD.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Berta Luzón-Toro

  • Elena Rubio de la Torre

  • Asunción Delgado

  • Jordi Pérez-Tur

  • Sabine Hilfiker

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free