Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation

117Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Pathogenic mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant and certain cases of sporadic Parkinson's disease (PD). The G2019S substitution in LRRK2 is the most common genetic determinant of PD identified so far, and maps to a specific region of the kinase domain called the activation segment. Here, we show that autophosphorylation of LRRK2 is an intermolecular reaction and targets two residues within the activation segment. The prominent pathogenic G2019S mutation in LRRK2 results in altered autophosphorylation, and increased autophosphorylation and substrate phosphorylation, through a process that seems to involve reorganization of the activation segment. Our results suggest a molecular mechanistic explanation for how the G2019S mutation enhances the catalytic activity of LRRK2, thereby leading to pathogenicity. These findings have important implications for therapeutic strategies in PD. © The Author 2007. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Luzón-Toro, B., de la Torre, E. R., Delgado, A., Pérez-Tur, J., & Hilfiker, S. (2007). Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Human Molecular Genetics, 16(17), 2031–2039. https://doi.org/10.1093/hmg/ddm151

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free