Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues

  • Hunt J
  • Ahmed M
  • Fierke C
  • 19

    Readers

    Mendeley users who have this article in their library.
  • 93

    Citations

    Citations of this article.

Abstract

The role of highly conserved aromatic residues surrounding the zinc binding site of human carbonic anhydrase II (CAII) in determining the metal ion binding specificity of this enzyme has been examined by mutagenesis. Residues F93, F95, and W97 are located along a beta-strand containing two residues that coordinate zinc, H94 and H96, and these aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitutions of these aromatic amino acids with smaller side chains enhance the copper affinity (up to 100-fold) while decreasing the affinity of both cobalt and zinc, thereby altering the metal binding specificity up to 10(4)-fold. Furthermore, the free energy of the stability of native CAII, determined by solvent-induced denaturation, correlates positively with increased hydrophobicity of the amino acids at positions 93, 95, and 97 as well as with cobalt and zinc affinity. Conversely, increased copper affinity correlates with decreased protein stability. Zinc specificity is therefore enhanced by formation of the native enzyme structure. These data suggest that the hydrophobic cluster in CAII is important for orienting the histidine residues to stabilize metals bound with a distorted tetrahedral geometry and to destabilize the trigonal bipyramidal geometry of bound copper. Knowledge of the structural factors that lead to high metal ion specificity will aid in the design of metal ion biosensors and de novo catalytic sites.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Jennifer A. Hunt

  • Mahiuddin Ahmed

  • Carol A. Fierke

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free