Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing

  • Gawad S
  • Schild L
  • Renaud P
  • 2

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

A new cytological tool, based on the micro Coulter particle counter ([small mu ]CPC) principle, aimed at diagnostic applications for cell counting and separation in haematology, oncology or toxicology is described. The device measures the spectral impedance of individual cells or particles and allows screening rates over 100 samples s-1 on a single-cell basis. This analyzer is intended to drive a sorting actuator producing a subsequent cell separation. Size reduction and integration of functions are essential in achieving precise measurements and high throughput. 3D finite element simulations are presented to compare various electrode geometries and their influence on cell parameters estimation. The device is based on a glass-polyimide microfluidic chip with integrated channels and electrodes microfabricated at the length scale of the particles to be investigated (1-20 [small mu ]m). A laminar liquid flow carries the suspended particles through the measurement area. Each particle's impedance signal is recorded by a differential pair of microelectrodes using the cell surrounding media as a reference. The micromachined chip and processing electronic circuit allow simultaneous impedance measurements at multiple frequencies, ranging from 100 kHz to 15 MHz. In this paper, we describe the microfabrication and characterisation of an on-chip flow-cytometer as the first building block of a complete cell-sorting device. We then discuss the signal conditioning technique and finally impedance measurements of cells and particles of different sizes and types to demonstrate the differentiation of subpopulations in a mixed sample.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • S Gawad

  • L Schild

  • P Renaud

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free