Micropillar Testing of Amorphous Silica

  • Lacroix R
  • Chomienne V
  • Kermouche G
 et al. 
  • 22

    Readers

    Mendeley users who have this article in their library.
  • 13

    Citations

    Citations of this article.

Abstract

Amorphous silica exhibits a complex mechanical response. The elastic regime is highly nonlinear while plastic flow does not conserve volume, resulting in densification. As a result the quantification of a reliable constitutive equation is a difficult task. We have assessed the potential of micropillar compression testing for the investigation of the micromechanical properties of amorphous silica. We have calculated the response of amorphous silica micropillars as predicted by finite element analysis. The results were compared to preliminary microcompression tests. In the calculations, an advanced constitutive law including plastic response, densification, and strain hardening was used. Special attention was paid to the evaluation of the impact of substrate compliance, pillar misalignment, and friction conditions. We find that amorphous silica is much more amenable than some metals to microcompression experiments due to a comparatively high ratio between yield stress and elastic modulus. The simulations are found to be very consistent with the experimental results. However, full agreement cannot be obtained without allowance for the nonlinear response of amorphous silica in the elastic regime. © 2012 The American Ceramic Society and Wiley Periodicals, Inc.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free