Mining uncertain data with multiobjective genetic fuzzy systems to be applied in consumer behaviour modelling

  • Casillas J
  • Martinez-Lopez F
  • 2

    Readers

    Mendeley users who have this article in their library.
  • N/A

    Citations

    Citations of this article.

Abstract

The main problem Currently faced by market-oriented firms is not the availability of information (data), but the possession of appropriate levels of knowledge to take the right decisions. This is common background for firms. In this regard, marketing professionals and scholars highlight the necessity for knowing and explaining consumers' behaviour patterns in an increasingly efficient way. The use of new knowledge discovery methods, able to exploit such data, may represent it relevant source of competitive advantage. In marketing. the information about most consumer variables of interest is usually obtained by means of questionnaires containing a diversity of items. It is also frequent that marketing modellers make use of unobserved variables to build the consumer models; i.e.. abstract variables that need to be measured by means of it set of observed variables or items associated with them. In these cases, the value of a certain unobserved variable cannot be assigned to a number. but to a potentially scattered set of numbers, This fact disables the application of conventional data mining techniques to extract knowledge from them. In this paper. we present it new approach that is able to deal with this kind of uncertain data by using it multiobjective genetic algorithm to derive fuzzy rules. Specifically, we propose it complete methodology that considers the different stages of knowledge discovery: data collection. data mining, and knowledge interpretation. This methodology is experimented on a consumer modelling application in interactive computer-mediated environments. (c) 2007 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Authors

  • J Casillas

  • F J Martinez-Lopez

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free