Journal article

Modeling interfacial liquid layers on environmental ices

Kuo M, Moussa S, McNeill V ...see all

Atmospheric Chemistry and Physics, vol. 11, issue 18 (2011) pp. 9971-9982

  • 22

    Readers

    Mendeley users who have this article in their library.
  • 23

    Citations

    Citations of this article.
Sign in to save reference

Abstract

Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it cre- ates a surface layer, in micropockets, or at grain boundaries or triple junctions. We present a model for brines and their associated liq- uid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermody- namics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to con- sider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for en- vironmentally important volatile and nonvolatile solutes in- cluding NaCl, HCl, and HNO 3 . The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may sig- nificantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free