Molecular determinants of ovarian cancer chemoresistance: New insights into an old conundrum

  • Ali A
  • Farrand L
  • Kim J
 et al. 
  • 65


    Mendeley users who have this article in their library.
  • 59


    Citations of this article.


Ovarian cancer is the most lethal gynecological malignancy. Cisplatin and its derivatives are first-line chemotherapeutics, and their resistance is a major hurdle in successful ovarian cancer treatment. Understanding the molecular dysregulation underlying chemoresistance is important for enhancing therapeutic outcome. Here, we review two established pathways in cancer chemoresistance. p53 is a major tumor suppressor regulating proliferation and apoptosis, and its mutation is a frequent event in human malignancies. The PI3K/Akt axis is a key oncogenic pathway regulating survival and tumorigenesis by controlling several tumor suppressors, including p53. The interplay between these pathways is well established, although the oncogenic phosphatase PPM1D adds a new layer to this intricate relationship and provides new insights into the processes determining cell fate. Inhibition of the PI3K/Akt pathway by functional food compounds as an adjunct to chemotherapeutics may tip the balance in favor of apoptosis rather than survival, enhancing therapeutic efficacy, and reducing side effects.

Author-supplied keywords

  • Functional food compounds
  • Ovarian cancer chemoresistance
  • P53
  • PI3K/Akt
  • PPM1D

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free