Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals

  • Lu W
  • Wang C
  • Schmidt M
 et al. 
  • 57


    Mendeley users who have this article in their library.
  • 85


    Citations of this article.


A method is presented for expressing the occupied self-consistent-field (SCF) orbitals of a molecule exactly in terms of chemically deformed atomic minimal-basis-set orbitals that deviate as little as possible from free-atom SCF minimal-basis orbitals. The molecular orbitals referred to are the exact SCF orbitals, the free-atom orbitals referred to are the exact atomic SCF orbitals, and the formulation of the deformed "quasiatomic minimal-basis-sets" is independent of the calculational atomic orbital basis used. The resulting resolution of molecular orbitals in terms of quasiatomic minimal basis set orbitals is therefore intrinsic to the exact molecular wave functions. The deformations are analyzed in terms of interatomic contributions. The Mulliken population analysis is formulated in terms of the quasiatomic minimal-basis orbitals. In the virtual SCF orbital space the method leads to a quantitative ab initio formulation of the qualitative model of virtual valence orbitals, which are useful for calculating electron correlation and the interpretation of reactions. The method is applicable to Kohn-Sham density functional theory orbitals and is easily generalized to valence MCSCF orbitals.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • W. C. Lu

  • C. Z. Wang

  • M. W. Schmidt

  • L. Bytautas

  • K. M. Ho

  • K. Ruedenberg

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free