Monochromaticity of Orientation Maps in V1 Implies Minimum Variance for Hypercolumn Size

  • Afgoustidis A
  • 11


    Mendeley users who have this article in their library.
  • 1


    Citations of this article.


In the primary visual cortex of many mammals, the processing of sensory information involves recognizing stimuli orientations. The repartition of preferred orientations of neurons in some areas is remarkable: a repetitive, non-periodic, layout. This repetitive pattern is understood to be fundamental for basic non-local aspects of vision, like the perception of contours, but important questions remain about its development and function. We focus here on Gaussian Random Fields, which provide a good description of the initial stage of orientation map development and, in spite of shortcomings we will recall, a computable framework for discussing general principles underlying the geometry of mature maps. We discuss the relationship between the notion of column spacing and the structure of correlation spectra; we prove formulas for the mean value and variance of column spacing, and we use numerical analysis of exact analytic formulae to study the variance. Referring to studies by Wolf, Geisel, Kaschube, Schnabel, and coworkers, we also show that spectral thinness is not an essential ingredient to obtain a pinwheel density of π, whereas it appears as a signature of Euclidean symmetry. The minimum variance property associated to thin spectra could be useful for information processing, provide optimal modularity for V1 hypercolumns, and be a first step toward a mathematical definition of hypercolumns. A measurement of this property in real maps is in principle possible, and comparison with the results in our paper could help establish the role of our minimum variance hypothesis in the development process.

Author-supplied keywords

  • Column spacing
  • Gaussian random fields
  • Kac–Rice formula
  • Orientation hypercolumns
  • Pinwheel density
  • Visual cortex

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Alexandre Afgoustidis

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free