Motion charged battery as sustainable flexible-power-unit

  • Wang S
  • Lin Z
  • Niu S
 et al. 
  • 42


    Mendeley users who have this article in their library.
  • 60


    Citations of this article.


Energy harvesting and storage are the two most important energy technologies developed for portable, sustainable, and self-sufficient power sources for mobile electronic systems. However, both have limitations for providing stable direct-current (DC) with an infinite lifetime. Herein, we integrated a triboelectric nanogenerator (TENG)-based mechanical energy harvester with Li-ion-battery (LIB)-based energy storage as a single device for demonstrating a flexible self-charging power unit (SCPU), which allows a battery to be charged directly by ambient mechanical motion. This physical integration enables a new operation mode of the SCPU: the "sustainable mode", in which the LIB stores the TENG-generated electricity while it is driving an external load. With the LIB being replenished by the ambient mechanical energy, the SCPU can keep providing a constant voltage to the load by utilizing the stable difference between the battery's intrinsic electrode potentials. This study will impact the traditional trends of battery research and advance the development of the self-powered systems.

Author-supplied keywords

  • energy storage
  • lithium ion battery
  • mechanical energy harvesting
  • self-powered system
  • triboelectric nanogenerator

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free