Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex.

  • Gulledge A
  • Jaffe D
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


The mechanisms underlying the inhibitory effects of dopamine (DA) on layer V pyramidal neuron excitability in the prelimbic region of the rat medial prefrontal cortex were investigated. Under control conditions, DA depressed both action potential generation (driven by somatic current injection) and input resistance (R(N)). The presence of GABA(A) receptor antagonists blocked DA-induced depression of action potential generation and revealed a delayed increase in excitability that persisted for the duration of experimental recording, up to 20 min following the washout of DA. In contrast to spike generation, disinhibition did not affect the transient depression of R(N) produced by DA, suggesting independent actions of DA on spike generation and R(N). Consistent with the hypothesis that DA acts to decrease pyramidal cell output via a GABAergic mechanism, DA increased the frequency of spontaneous inhibitory postsynaptic currents in both the absence and presence of TTX. Furthermore focal application of GABA to a perisomatic region mimicked the inhibitory effect of DA on spike production without affecting R(N). Focal application of bicuculline to the same location reversed the inhibitory effect of bath-applied DA on spike generation, while again having no effect on R(N). The depression of R(N) by DA was both occluded and mimicked by the Na(+) channel blocker TTX, suggesting the involvement of a Na(+) conductance in reducing pyramidal cell R(N) during the acute presence of DA. Together these data demonstrate that the acute presence of DA decreases pyramidal neuron excitability by two independent mechanisms. At the same time DA triggers a delayed and longer-lasting increase in excitability that is partially masked by synaptic inhibition.

Author-supplied keywords

  • Action Potentials
  • Action Potentials: drug effects
  • Action Potentials: physiology
  • Animals
  • Bicuculline
  • Bicuculline: pharmacology
  • Calcium
  • Calcium: metabolism
  • Dopamine
  • Dopamine: pharmacology
  • Excitatory Postsynaptic Potentials
  • Excitatory Postsynaptic Potentials: drug effects
  • Excitatory Postsynaptic Potentials: physiology
  • GABA Antagonists
  • GABA Antagonists: pharmacology
  • GABA-A
  • GABA-A Receptor Antagonists
  • GABA-A: antagonists & inhibitors
  • GABA-A: physiology
  • Neural Inhibition
  • Neural Inhibition: drug effects
  • Neural Inhibition: physiology
  • Organ Culture Techniques
  • Patch-Clamp Techniques
  • Prefrontal Cortex
  • Prefrontal Cortex: cytology
  • Prefrontal Cortex: physiology
  • Pyramidal Cells
  • Pyramidal Cells: drug effects
  • Pyramidal Cells: physiology
  • Rats
  • Receptors
  • Sodium
  • Sodium: metabolism
  • Sprague-Dawley
  • Tetrodotoxin
  • Tetrodotoxin: pharmacology
  • gamma-Aminobutyric Acid
  • gamma-Aminobutyric Acid: pharmacology

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • A.T. T Gulledge

  • D.B. B Jaffe

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free