Multiple interacting liquids

  • Losasso F
  • Shinar T
  • Selle A
 et al. 
  • 121


    Mendeley users who have this article in their library.
  • 120


    Citations of this article.


The particle level set method has proven successful for the simu- lation of two separate regions (such as water and air, or fuel and products). In this paper, we propose a novel approach to extend this method to the simulation of as many regions as desired. The various regions can be liquids (or gases) of any type with differing viscosi- ties, densities, viscoelastic properties, etc. We also propose tech- niques for simulating interactions between materials, whether it be simple surface tension forces or more complex chemical reactions with one material converting to another or two materials combin- ing to form a third. We use a separate particle level set method for each region, and propose a novel projection algorithm that decodes the resulting vector of level set values providing a “dictionary” that translates between them and the standard single-valued level set representation. An additional difficulty occurs since discretization stencils (for interpolation, tracing semi-Lagrangian rays, etc.) cross region boundaries naively combining non-smooth or even discon- tinuous data. This has recently been addressed via ghost values, e.g. for fire or bubbles. We instead propose a new paradigm that allows one to incorporate physical jump conditions in data “on the fly,” which is significantly more efficient for multiple regions especially at triple points or near boundaries with solids.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Frank Losasso

  • Tamar Shinar

  • Andrew Selle

  • Ronald Fedkiw

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free