The multitalented microbial sensory rhodopsins

  • Spudich J
  • 136

    Readers

    Mendeley users who have this article in their library.
  • 139

    Citations

    Citations of this article.

Abstract

Sensory rhodopsins are photoactive, membrane-embedded seven-transmembrane helix receptors that use retinal as a chromophore. They are widespread in the microbial world in each of the three domains of life: Archaea, Bacteria and Eukarya. A striking characteristic of these photoreceptors is their different modes of signaling in different organisms, including interaction with other membrane proteins, interaction with cytoplasmic transducers and light-controlled Ca2+channel activity. More than two decades since the discovery of the first sensory rhodopsins in the archaeon Halobacterium salinarum, genome projects have revealed a widespread presence of homologous photosensors. New work on cyanobacteria, algae, fungi and marine proteobacteria is revealing how evolution has modified the common design of these proteins to produce a remarkably rich diversity in their signaling biochemistry. © 2006 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • John L. Spudich

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free