Multivariate image segmentation using semantic region growing with adaptive edge penalty

  • Qin A
  • Clausi D
  • 57

    Readers

    Mendeley users who have this article in their library.
  • 62

    Citations

    Citations of this article.

Abstract

Multivariate image segmentation is a challenging task, influenced by large intraclass variation that reduces class distinguishability as well as increased feature space sparseness and solution space complexity that impose computational cost and degrade algorithmic robustness. To deal with these problems, a Markov random field (MRF) based multivariate segmentation algorithm called "multivariate iterative region growing using semantics" (MIRGS) is presented. In MIRGS, the impact of intraclass variation and computational cost are reduced using the MRF spatial context model incorporated with adaptive edge penalty and applied to regions. Semantic region growing starting from watershed over-segmentation and performed alternatively with segmentation gradually reduces the solution space size, which improves segmentation effectiveness. As a multivariate iterative algorithm, MIRGS is highly sensitive to initial conditions. To suppress initialization sensitivity, it employs a region-level k -means (RKM) based initialization method, which consistently provides accurate initial conditions at low computational cost. Experiments show the superiority of RKM relative to two commonly used initialization methods. Segmentation tests on a variety of synthetic and natural multivariate images demonstrate that MIRGS consistently outperforms three other published algorithms.

Author-supplied keywords

  • Initialization sensitivity
  • Markov random field (MRF)
  • multilevel logistic (MLL) model
  • multivariate segmentation
  • region adjacency graph (RAG)
  • semantic region growing
  • vector-valued image
  • watershed

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free