Journal article

Nanostructured bulk silicon as an effective thermoelectric material

Bux S, Blair R, Gogna P, Lee H, Chen G, Dresselhaus M, Kaner R, Fleurial J ...see all

Advanced Functional Materials, vol. 19, issue 15 (2009) pp. 2445-2452

  • 206

    Readers

    Mendeley users who have this article in their library.
  • 229

    Citations

    Citations of this article.
Sign in to save reference

Abstract

Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions and small unattended terrestrial systems. However, more efficient bulk materials and practical devices are required to improve existing technology and expand into large-scale waste heat recovery applications. Research has long focused on complex compounds that best combine the electrical properties of degenerate semiconductors with the low thermal conductivity of glassy materials. Recently it has been found that nanostructuring is an effective method to decouple electrical and thermal transport parameters. Dramatic reductions in the lattice thermal conductivity are achieved by nanostructuring bulk silicon with limited degradation in its electron mobility, leading to an unprecedented increase by a factor of 3.5 in its performance over that of the parent single-crystal material. This makes nanostructured bulk (nano-bulk) Si an effective high temperature thermoelectric material that performs at about 70% the level of state-of-the-art Si0.8Ge0.2 but without the need for expensive and rare Ge.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free