Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization

  • Bevilacqua M
  • Roumy A
  • Guillemot C
 et al. 
  • 14


    Mendeley users who have this article in their library.
  • 17


    Citations of this article.


This paper describes a novel method for single-image super- resolution (SR) based on a neighbor embedding technique which uses Semi-Nonnegative Matrix Factorization (SNMF). Each low-resolution (LR) input patch is approximated by a linear combination of nearest neighbors taken from a dictio- nary. This dictionary stores low-resolution and corresponding high-resolution (HR) patches taken from natural images and is thus used to infer the HR details of the super-resolved im- age. The entire neighbor embedding procedure is carried out in a feature space. Features which are either the gradient val- ues of the pixels or the mean-subtracted luminance values are extracted from the LR input patches, and from the LR and HR patches stored in the dictionary. The algorithm thus searches for the K nearest neighbors of the feature vector of the LR input patch and then computes the weights for approximating the input feature vector. The use of SNMF for computing the weights of the linear approximation is shown to have a more stable behavior than the use of LLE and lead to significantly higher PSNR values for the super-resolved images. Index

Author-supplied keywords

  • Semi-nonnegative Matrix Factorization
  • Super-resolution
  • neighbor embedding

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free