Neural Differentiation of Expected Reward and Risk in Human Subcortical Structures

510Citations
Citations of this article
721Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In decision-making under uncertainty, economic studies emphasize the importance of risk in addition to expected reward. Studies in neuroscience focus on expected reward and learning rather than risk. We combined functional imaging with a simple gambling task to vary expected reward and risk simultaneously and in an uncorrelated manner. Drawing on financial decision theory, we modeled expected reward as mathematical expectation of reward, and risk as reward variance. Activations in dopaminoceptive structures correlated with both mathematical parameters. These activations differentiated spatially and temporally. Temporally, the activation related to expected reward was immediate, while the activation related to risk was delayed. Analyses confirmed that our paradigm minimized confounds from learning, motivation, and salience. These results suggest that the primary task of the dopaminergic system is to convey signals of upcoming stochastic rewards, such as expected reward and risk, beyond its role in learning, motivation, and salience. © 2006 Elsevier Inc. All rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural Differentiation of Expected Reward and Risk in Human Subcortical Structures. Neuron, 51(3), 381–390. https://doi.org/10.1016/j.neuron.2006.06.024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free