NeuroArm: an MR compatible robot for microsurgery

  • [1]
  • P.M. Black, T. Moriarty, E. Alexander III, P. Stieg, E.J. Woodard, P.L. Gleason, C.H. Martin, R. Kikinis, R.B. Schwartz F
  • Applications D
 et al. 
  • 1


    Mendeley users who have this article in their library.
  • N/A


    Citations of this article.


ntroduction: Technologies such as microscopy have pushed surgeons to the limits of their dexterity and endurance. Robotic advances such as tremor filtration and motion scaling permit maximal use of magnification, and enable precise, tremor-free tool manipulation during microsurgery. To our knowledge, however, no such device exists for image-guided, ambidextrous microneurosurgery, prompting us to develop our own system. Methods: We approached a company with exceptional experience in space robotics to design and construct an appropriate system. A systematic and structured approached was followed for the design of neuroArm. Engineers studied the operating room environment with the assistance of surgeons and nursing staff. A preliminary design was developed, and subsequently evaluated by surgical staff. Selected materials were tested at 3.0 T to ensure MR compatibility and performance characteristics of the robot actuators and encoders were evaluated. Results: We have developed an MR compatible ambidextrous robot capable of both microneurosurgery and stereotaxy. The design is based on a SCARA configuration and has 8-DOF (including tool actuation). The end-effector is designed to interface with standard neurosurgical tools and is equipped with a 3-DOF optical force sensor for haptic feedback. Comprehensive testing of materials was conducted in a 3-T magnet to ensure compatibility. Breadboard testing results suggest a tool tip resolution of 30 μm. Discussion: A systematic approach has been applied to the development of a unique and dexterous neurosurgical robot. The system promises to enhance surgical performance, reduce fatigue, and improve surgical outcomes. This seamless integration of robotics with iMRI will further revolutionize neurosurgery.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

There are no full text links


  • [1]

  • F.A. Jolesz P.M. Black, T. Moriarty, E. Alexander III, P. Stieg, E.J. Woodard, P.L. Gleason, C.H. Martin, R. Kikinis, R.B. Schwartz

  • Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical Applications

  • pp. 831-842 Neurosurgery, 41 (1997)

  • CrossRefView Record in Scopus

  • [2]

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free