Journal article

Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone

Bauer S, Koch D, Unger N, Metzger S, Shindell D, Streets D ...see all

Atmospheric Chemistry and Physics, vol. 7, issue 19 (2007) pp. 5043-5059

  • 104


    Mendeley users who have this article in their library.
  • 119


    Citations of this article.
Sign in to save reference


Nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammoniumsulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario) atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission-and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about - 0.14 W/m(2) and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are - 0.11 and - 0.05 W/m(2), respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations, in the fine particle mode, rising above 3 mu g/m(3) in China and therefore reaching pollution levels, like sulphate aerosols.

Author-supplied keywords

  • ammonium
  • atmospheric equilibrium-model
  • general-circulation model
  • hygroscopicity
  • ionic-solutions
  • multicomponent
  • optical-properties
  • pacific exploratory mission
  • sulfate
  • thermodynamic model

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • S E Bauer

  • D Koch

  • N Unger

  • S M Metzger

  • D T Shindell

  • D G Streets

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free