A Nonlinear Anisotropic Viscoelastic Model for the Tensile Behavior of the Corneal Stroma

  • Nguyen T
  • Jones R
  • Boyce B
  • 61


    Mendeley users who have this article in their library.
  • 63


    Citations of this article.


Tensile strip experiments of bovine corneas have shown that the tissue exhibits a nonlinear rate-dependent stress-strain response and a highly nonlinear creep response that depends on the applied hold stress. In this paper, we present a constitutive model for the finite deformation, anisotropic, nonlinear viscoelastic behavior of the corneal stroma. The model formulates the elastic and viscous response of the stroma as the average of the elastic and viscous response of the individual lamellae weighted by a probability density function of the preferred in-plane lamellar orientations. The result is a microstructure-based model that incorporates the viscoelastic properties of the matrix and lamellae and the lamellar architecture in the response of the stroma. In addition, the model includes a fully nonlinear description of the viscoelastic response of the lamellar(fiber) level. This is in contrast to previous microstructure-based models of fibrous soft tissues, which relied on quasilinear viscoelastic formulations of the fiber viscoelasticity. Simulations of recent tensile strip experiments show that the model is able to predict, well within the bounds of experimental error and natural variations, the cyclic stress-strain behavior and nonlinear creep behavior observed in uniaxial tensile experiments of excised strips of bovine cornea.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • T. D. Nguyen

  • R. E. Jones

  • B. L. Boyce

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free