Nonlinear control of feedforward systems with bounded signals

  • Kaliora G
  • Astolfi A
  • 24


    Mendeley users who have this article in their library.
  • 96


    Citations of this article.


The stabilization problem for a class of nonlinear feedforward systems is solved using bounded control. It is shown that when the lower subsystem of the cascade is input-to-state stable and the upper subsystem not exponentially unstable, global asymptotic stability can be achieved via a simple static feedback having bounded amplitude that requires knowledge of the "upper" part of the state only. This is made possible by invoking the bounded real lemma and a generalization of the small gain theorem. Thus, stabilization is achieved with typical saturation functions, saturations of constant sign, or quantized control. Moreover, the problem of asymptotic stabilization of a stable linear system with bounded outputs is solved by means of dynamic feedback. Finally, a new class of stabilizing control laws for a chain of integrators with input saturation is proposed. Some robustness issues are also addressed and the theory is illustrated with examples on the stabilization of physical systems.

Author-supplied keywords

  • Bounded control
  • Bounded-real lemma
  • Forwarding
  • Nonlinear stabilization

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free