Nonlinear input-normal realizations based on the differential eigenstructure of hankel operators

  • Fujimoto K
  • Scherpen J
  • 14


    Mendeley users who have this article in their library.
  • 47


    Citations of this article.


This paper investigates the differential eigenstructure of Hankel operators for nonlinear systems. First, it is proven that the variational system and the Hamiltonian extension with extended input and output spaces can be interpreted as the Gaˆteaux differential and its adjoint of a dynamical input-output system, respectively. Second, the Gaˆteaux differential is utilized to clarify the main result the differential eigenstructure of the nonlinear Hankel operator which is closely related to the Hankel norm of the original system. Third, a new characterization of the nonlinear extension of Hankel singular values are given based on the differential eigenstructure. Finally, a balancing procedure to obtain a new input-normal/output-diagonal realization is derived. The results in this paper thus provide new insights to the realization and balancing theory for nonlinear systems.

Author-supplied keywords

  • Balanced realization
  • Model reduction
  • Nonlinear control

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text


  • Kenji Fujimoto

  • Jacquelien M.A. Scherpen

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free