Nucleic acid nanostructures: Bottom-up control of geometry on the nanoscale

  • Seeman N
  • Lukeman P
  • 111


    Mendeley users who have this article in their library.
  • 134


    Citations of this article.


DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and they can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nanoconstructs, and in the scaffolding of other species into DNA arrangements.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Nadrian C. Seeman

  • Philip S. Lukeman

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free