Journal article

A numerical experiment on the chaotic behaviour of the Solar System

Laskar J ...see all

Nature, vol. 338, issue 6212 (1989) pp. 237-238

  • 45

    Readers

    Mendeley users who have this article in their library.
  • 235

    Citations

    Citations of this article.
Sign in to save reference

Abstract

LAPLACE and Lagrange made an essential contribution to the study of the stability of the Solar System by proving analytically that, to first order in the masses, inclinations and eccentricities of their orbits, the planets move quasiperiodically. Since then, many analytic quasiperiodic solutions have been sought to higher order1?10.1 have recently constructed an extensive analytic system of averaged differential equations containing the secular evolution of the orbits of the eight main planets, accurate to second order in the planetary masses and to fifth order in eccentricity and inclination, and including corrections from general relativity and the Moon8?10. Here I describe the results of a numerical integration of this system, extending backwards over 200 million years. The solution is chaotic, with a maximum Lyapunov exponent that reaches the surprisingly large value of approx 1/5 Myr?1. The motion of the Solar System is thus shown to be chaotic, not quasiperiodic. In particular, predictability of the orbits of the inner planets, including the Earth, is lost within a few tens of millions of years. This does not mean that after such a short timespan we will see catastrophic events such as a crossing of the orbits of Venus and Earth; but the traditional tools of quantitative celestial mechanics (numerical integrations or analytical theories), which aim at unique solutions from given initial conditions, will fail to predict such events. The problem of the stability of the Solar System will have to be set up again, and the qualitative methods initiated by Poincare definitely need to replace quantitative methods in this analysis.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • J. Laskar

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free