Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method

  • Düster A
  • Sehlhorst H
  • Rank E
  • 52

    Readers

    Mendeley users who have this article in their library.
  • 37

    Citations

    Citations of this article.

Abstract

We present a new approach for the numerical homogenization of cellular and heterogeneous materials. The procedure is based on the finite cell method, which is applied to efficiently discretize representative volume elements for which effective material properties are computed. The starting point for our homogenization might be either a computer-aided design of a heterogeneous material or a three-dimensional computer tomography (CT-scan) of the specimen of interest. A fully automatic discretization in terms of finite cells, applying a hierarchic extension process to control the discretization error, is utilized to solve the corresponding boundary value problems arising during the homogenization. Special emphasis is placed on the numerical treatment of boundary conditions. To this end we apply the window method, which can be interpreted as a variant of the self-consistency method. Several numerical examples ranging from porous materials to fiber-reinforced composites will be presented, demonstrating the efficiency of our approach. The homogenization procedure will be also applied to a foam, a CT-scan of which is available.

Author-supplied keywords

  • Composites
  • Finite cell method
  • Foams
  • Heterogeneous materials
  • Numerical homogenization
  • Porous materials

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Alexander Düster

  • Hans Georg Sehlhorst

  • Ernst Rank

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free