Numerical reconstructions of the Eurasian Ice Sheet and climate during the Late Weichselian

  • Siegert M
  • Dowdeswell J
  • 108

    Readers

    Mendeley users who have this article in their library.
  • 91

    Citations

    Citations of this article.

Abstract

Geological investigations undertaken through the Quaternary Environments of the Eurasian North programme established ice-sheet limits for the Eurasian Arctic at the Last Glacial Maximum (LGM), sedimentary records of palaeo-ice streams and uplift information relating to ice-sheet configuration and the pattern of deglaciation. Ice-sheet numerical modelling was used to reconstruct a history of the Eurasian Ice Sheet compatible with these geological datasets. The result was a quantitative assessment of the time-dependent behaviour of the ice sheet, its mass balance and climate, and predictions of glaciological products including sediments, icebergs and meltwater. At the LGM, ice cover was continuous from Scandinavia to the Arctic Ocean margin of the Barents Sea to the north, and the Kara Sea to the east. In the west, along the continental margin between the Norwegian Channel and Svalbard, the ice sheet was characterised by fast flowing ice streams occupying bathymetric troughs, which fed large volumes of sediment to the continental margin that were deposited as a series of trough mouth fans. Ice streams may also have been present in bathymetric troughs to the north between Svalbard and Franz Josef Land. Further east, however, the ice sheet was thinner. Across the Kara Sea, the ice thickness was predicted to be less than 300m, while on Severnaya Zemlya the ice cover may have been thinner at the LGM than at present. It is likely that the Taymyr Peninsula was mainly free of ice at the LGM. In the south, the ice margin was located close to the shoreline of the Russian mainland. The climate associated with this ice sheet is maritime to the west and, in stark contrast, desert-like in the east. Atmospheric General Circulation Modelling has revealed that such a contrast is possible under relatively warm north Atlantic conditions because a circulation system develops across the Kara Sea, isolating it from the moisture-laden westerlies, which are diverted to the south. Ice-sheet decay began through enhanced iceberg calving in the deepest regions of the Barents Sea, which caused a significant ice embayment within the Bear Island Trough. By about 12,000 years ago, further iceberg calving reduced ice extent to the northern archipelagos and their surrounding shallow seas. Ice decay was complete by about 10,000 years ago. © 2004 Elsevier Ltd. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free