Optimization of exposure parameters for cone beam computed tomography sialography

  • Jadu F
  • Hill M
  • Yaffe M
 et al. 
  • 25


    Mendeley users who have this article in their library.
  • 8


    Citations of this article.


Objectives: The assessment of image quality is a crucial step in the development of a new imaging protocol. Having proposed and reported on a preliminary protocol for sialography using cone beam CT (CBCT), the purpose of this study was to further optimize this protocol by maximizing the image signal difference-to-noise ratio (SDNR) and to relate these new data to previously published dosimetric data for CBCT sialography. Methods: An imaging phantom was constructed using samples with different concentrations of iodine and a water-immersed mandible. The CB MercuRay (Hitachi Medical Systems, Tokyo, Japan) was used to image the phantom using different peak kilovoltage (kVp) and milliamperage (mA) settings. SDNR was then calculated using the raw images based on mean pixel values (MPV) measured in selected regions of interest (ROI). Finally, a figure of merit (FOM) was calculated to examine the trade-off between image SDNR and effective radiation dose. Results: The SDNR demonstrated an expected increase as the kVp increased from 60 to 120. Also, images made with the higher mA setting (15) had greater SDNR. The iodine concentration also influenced the image quality such that SDNR increased with increased amounts of iodine. The calculated FOM was greatest for the technique using 80 kVp, with equivalent results for 10 mA and 15 mA. Conclusion: An optimized protocol for CBCT sialography using CB MercuRay entails a 6 inch field of view with 80 kVp and 10 mA.

Author-supplied keywords

  • Cone beam computed tomography
  • Sialography

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free