Optimization with randomized search heuristics - The (A)NFL theorem, realistic scenarios, and difficult functions

  • Droste S
  • Jansen T
  • Wegener I
  • 32

    Readers

    Mendeley users who have this article in their library.
  • 62

    Citations

    Citations of this article.

Abstract

The No Free Lunch (NFL) theorem due to Wolpert and Macready (IEEE Trans. Evol. Comput. 1(1) (1997) 67) has led to controversial discussions on the usefulness of randomized search heuristics, in particular, evolutionary algorithms. Here a short and simple proof of the NFL theorem is given to show its elementary character. Moreover, the proof method leads to a generalization of the NFL theorem. Afterwards, realistic complexity theoretical-based scenarios for black box optimization are presented and it is argued why NFL theorems are not possible in such situations. However, an Almost No Free Lunch (ANFL) theorem shows that for each function which can be optimized efficiently by a search heuristic there can be constructed many related functions where the same heuristic is bad. As a consequence, search heuristics use some idea how to look for good points and can be successful only for functions "giving the right hints". The consequences of these theoretical considerations for some well-known classes of functions are discussed. © 2002 Elsevier Science B.V. All rights reserved.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Stefan Droste

  • Thomas Jansen

  • Ingo Wegener

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free