Orientational interactions in block copolymer melts: Self-consistent field theory

  • Zhao W
  • Russell T
  • Grason G
  • 24


    Mendeley users who have this article in their library.
  • 12


    Citations of this article.


We study the phase behavior of diblock copolymer melts with one block possessing orientation-dependent segmental interactions using self-consistent field theory. A generalized coarse-grained description is introduced based on the local (polar) orientational order parameter and K, an effective Frank elastic constant for orientational gradients. To explore the role played by orientational interactions in assembly thermodynamics, we apply the theory to two-dimensional melt morphologies for a range of K. As microphase segregation necessarily introduces splay deformations of the segment orientation, we find that increasing the stiffness K raises the critical χN at the onset of microphase separation. Furthermore, we find that strong orientational interactions in one block give rise to highly asymmetric phase diagrams due to the large penalty for high-splay morphologies, such as the cylindrical phase. Finally, we analyze the costs of inter-segmental splay as well as the size dependence of domain spacing on K based on a strong-segregation picture of morphologies.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Wei Zhao

  • Thomas P. Russell

  • Gregory M. Grason

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free