Overhauser dynamic nuclear polarization-enhanced NMR relaxometry

  • Franck J
  • Kausik R
  • Han S
  • 21

    Readers

    Mendeley users who have this article in their library.
  • 6

    Citations

    Citations of this article.

Abstract

We present a new methodological basis for selectively illuminating a dilute population of fluid within a porous medium. Specifically, transport in porous materials can be analyzed by now-standard nuclear magnetic resonance (NMR) relaxometry and NMR pulsed field gradient (PFG) diffusometry methods in combination with the prominent NMR signal amplification tool, dynamic nuclear polarization (DNP). The key components of the approach introduced here are (1) to selectively place intrinsic or extrinsic paramagnetic probes at the site or local volume of interest within the sample, (2) to amplify the signal from the local solvent around the paramagnetic probes with Overhauser DNP, which is performed in situ and under ambient conditions, and (3) to observe the ODNP-enhanced solvent signal with 1D or 2D NMR relaxometry methods, thus selectively amplifying only the relaxation dynamics of the fluid that resides in or percolates through the local porous volume that contains the paramagnetic probe. Here, we demonstrate the proof of principle of this approach by selectively amplifying the NMR signal of only one solvent population, which is in contact with a paramagnetic probe and occluded from a second solvent population. An apparent one-component T2relaxation decay is shown to actually contain two distinct solvent populations. The approach outlined here should be universally applicable to a wide range of other 1D and 2D relaxometry and PFG diffusometry measurements, including T1-T2or T1-D correlation maps, where the occluded population containing the paramagnetic probes can be selectively amplified for its enhanced characterization. © 2013 Elsevier Inc. All rights reserved.

Author-supplied keywords

  • Diffusion
  • Dynamic nuclear polarization
  • NMR

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free