Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures

  • Gray G
  • Morgan J
  • Sanz P
  • 40


    Mendeley users who have this article in their library.
  • 12


    Citations of this article.


Mechanically-based numerical modeling is a powerful tool for investigating fundamental processes associated with the formation and evolution of both large and small-scale geologic structures. Such methods are complementary with traditional geometrically-based cross-section analysis tools, as they enable mechanical validation of geometric interpretations. A variety of numerical methods are now widely used, and readily accessible to both expert and novice. We provide an overview of the two main classes of methods used for geologic studies: continuum methods (finite element, finite difference, boundary element), which divide the model into elements to calculate a system of equations to solve for both stress and strain behavior; and particle dynamics methods, which rely on the interactions between discrete particles to define the aggregate behavior of the system. The complex constitutive behaviors, large displacements, and prevalence of discontinuities in geologic systems, pose unique challenges for the modeler. The two classes of methods address these issues differently; e.g., continuum methods allow the user to input prescribed constitutive laws for the modeled materials, whereas the constitutive behavior 'emerges' from particle dynamics methods. Sample rheologies, case studies and comparative models are presented to demonstrate the methodologies and opportunities for future modelers. © 2013 Elsevier Ltd.

Author-supplied keywords

  • Boundary element
  • Constitutive laws
  • Contractional structures
  • Discrete element
  • Finite difference
  • Finite element
  • Particle dynamics
  • Plasticity
  • Structural modeling

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


  • Gary G. Gray

  • Julia K. Morgan

  • Pablo F. Sanz

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free