Oxygen hole doping of nanodiamond

  • Petit T
  • Arnault J
  • Girard H
 et al. 
  • 44


    Mendeley users who have this article in their library.
  • 40


    Citations of this article.


Surface-graphitized nanodiamonds (NDs) are promising hybrid nanomaterials which appear to combine core properties of diamond with surface properties of graphene-based materials. Here we demonstrate that NDs covered by graphene islands, so-called Fullerene-Like Reconstructions (FLRs), are sensitive to hole doping by molecular oxygen in water. NDs covered by FLRs (NDs-FLRs) are prepared by annealing under vacuum of detonation NDs at 750 °C. We propose that oxygen hole doping is promoted on FLRs due to a unique electronic interaction between the diamond core and the outer graphene layer. As a consequence, NDs-FLRs exhibit positive zeta potential in water, unlike NDs surrounded by several graphitic layers. Surface hole-doped NDs may be promising nanomaterials for new electronic and biomedical applications.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free