PAMAM dendrimer-drug interactions: Effect of pH on the binding and release pattern

  • Maingi V
  • Kumar M
  • Maiti P
  • 39

    Readers

    Mendeley users who have this article in their library.
  • 64

    Citations

    Citations of this article.

Abstract

Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM-drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM-Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Authors

  • Vishal Maingi

  • Mattaparthi Venkata Satish Kumar

  • Prabal K. Maiti

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free