Parallelism and evolutionary algorithms

  • Alba E
  • Tomassini M
  • 150


    Mendeley users who have this article in their library.
  • 552


    Citations of this article.


This paper contains a modern vision of the parallelization techniques used for evolutionary algorithms (EAs). The work is motivated by two fundamental facts: 1) the different families of EAs have naturally converged in the last decade while parallel EAs (PEAs) are still lack of unified studies; and 2) there is a large number of improvements in these algorithms and in their parallelization that raise the need for a comprehensive survey. We stress the differences between the EA model and its parallel implementation throughout the paper. We discuss the advantages and drawbacks of PEAs. Also, successful applications are mentioned and open problems are identified. We propose potential solutions to these problems and classify the different ways in which recent results in theory and practice are helping to solve them. Finally, we provide a highly structured background relating to PEAs in order to make researchers aware of the benefits of decentralizing and parallelizing an EA

Author-supplied keywords

  • Evolutionary algorithms
  • First hitting time
  • Population
  • Time complexity

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document


Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free