Journal article

Performance of the general amber force field in modeling aqueous POPC membrane bilayers

Jójárt B, Martinek T ...see all

Journal of Computational Chemistry, vol. 28, issue 12 (2007) pp. 2051-2058

  • 101

    Readers

    Mendeley users who have this article in their library.
  • 86

    Citations

    Citations of this article.
Sign in to save reference

Abstract

The aim of this work was to answer the question of whether the general amber force field (GAFF) is good enough to simulate fully hydrated POPC membrane bilayers. The test system contained 128 POPC and 2985 TIP3P water molecules. The equilibration was carried out in a nonarbitrary manner to reach the stable liquid-crystalline phase. The simulations were performed by using particle mesh Ewald electrostatics implemented in molecular dynamics packages Amber8 (NPT ensembles) and NAMD2 (NPgammaT ensembles). The computational results were assessed against the following experimental membrane properties: (i) area per lipid, (ii) area compressibility modulus, (iii) order parameter, (iv) gauche conformations per acyl chain, (v) lateral diffusion coefficients, (vi) electron density profile, and (vii) bound water at the lipid/water interface. The analyses revealed that the tested force field combination approximates the experimental values at an unexpectedly good level when the NPgammaT ensemble is applied with a surface tension of 60 mN m(-1) per bilayer. It is concluded that the GAFF/TIP3P combination can be utilized for aqueous membrane bilayer simulations, as it provides acceptable accuracy for biomolecular modeling.

Author-supplied keywords

  • AMBER
  • GAFF
  • Lipid bilayer
  • Membrane simulation
  • POPC

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free