Skip to content
Journal article

Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: First analysis of results in the boreal forest and implications for the measurement of PAN fluxes

Phillips G, Pouvesle N, Thieser J, Schuster G, Axinte R, Fischer H, Williams J, Lelieveld J, Crowley J ...see all

Atmospheric Chemistry and Physics, vol. 13, issue 3 (2013) pp. 1129-1139

  • 26

    Readers

    Mendeley users who have this article in their library.
  • 25

    Citations

    Citations of this article.
  • N/A

    Views

    ScienceDirect users who have downloaded this article.
Sign in to save reference

Abstract

We describe measurements of peroxyacetyl nitrate (CH3C(O)O2NO2, PAN) and peroxyacetic acid (CH3C(O)OOH, PAA) in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS). The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles – Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010) measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(O)O−, m/z = 59) resulting from reaction of CH3C(O)O2 (from the thermal dissociation of PAN) or CH3C(O)OOH with iodide ions using alternatively heated and ambient temperature inlet lines. During some periods of high temperature (~ 30 °C) and low NOx (< 1 ppbv), PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the (short timescale) acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the modelled ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN) and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

Cite this document

Choose a citation style from the tabs below