Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)

749Citations
Citations of this article
154Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Nuclear magnetic resonance (NMR) has been widely used in petrophysical characterization of sandstones and carbonates, but little attention has been paid in the use of this technique to study petrophysical properties of coals, which is essential for evaluating coalbed methane reservoir. In this study, two sets of NMR experiments were designed to study the pore types, pore structures, porosity and permeability of coals. Results show that NMR transverse relaxation (T2) distributions strongly relate to the coal pore structure and coal rank. Three T2 spectrum peaks identified by the relaxation time at 0.5-2.5 ms, 20-50 ms and >100 ms correspond to pores of <0.1 μm, >0.1 μm and cleats, respectively, which is consistent with results from computed tomography scan and mercury intrusion porosimetry. Based on calculated producible and irreducible porosities through a T2 cutoff time method, we propose a new NMR-based permeability model that better estimates the permeability of coals. In combination with mercury intrusion porosimetry, we also propose a NMR-based pore structure model that efficiently estimates the pore size distribution of coals. The new experiments and modeling prove the applicability of NMR in petrophysical characterization of intact coal samples, which has potential applications for NMR well logging in coalbed methane exploration. © 2009 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Yao, Y., Liu, D., Che, Y., Tang, D., Tang, S., & Huang, W. (2010). Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 89(7), 1371–1380. https://doi.org/10.1016/j.fuel.2009.11.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free