Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite

138Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Developing an easily handled and cost-effective phosphate absorbent is crucial for the control of water eutrophication. In this study, a naturally occurring, calcium-rich sepiolite (NOCS) was evaluated for its feasibility as a phosphate absorbent candidate. Batch studies showed that phosphate sorption on NOCS followed a stepwise isotherm for concentrations between 5 and 1000mgP/l, and the phosphate sorption was fitted well by the Freundlich equation. The estimated maximum phosphorus sorption capacity was 32.0mgP/g, which was quite high compared with other natural materials and was comparable to some efficient manmade P absorbents. The NOCS sorption kinetics followed a pseudo-first-order model with an R 2 value of 0.999. The adsorption of phosphate was highly pH dependent. Phosphate adsorption decreased moderately with increasing pH values from 3.0 to 6.0, and it decreased sharply in alkaline conditions. Ionic strength, sulfate, nitrate and chloride anions had no effects on the phosphate removal capacity of NOCS, but fluoride and bicarbonate anions exerted large effects. Phosphorus fractionation indicated that phosphate removed from the solution was primarily formed as a calcium-bound phosphorus precipitation, which was further confirmed by SEM-EDS analysis. Moreover, phosphate was barely (<1.5%) desorbed from the phosphorus-adsorbed sepiolite regardless of pH value. © 2011 Elsevier B.V.

Cite

CITATION STYLE

APA

Yin, H., Yun, Y., Zhang, Y., & Fan, C. (2011). Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. Journal of Hazardous Materials, 198, 362–369. https://doi.org/10.1016/j.jhazmat.2011.10.072

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free