Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity.

  • Moore B
  • Peters R
  • 77

    Readers

    Mendeley users who have this article in their library.
  • 109

    Citations

    Citations of this article.

Abstract

Frequency difference limens for pure tones (DLFs) and for complex tones (DLCs) were measured for four groups of subjects: young normal hearing, young hearing impaired, elderly with near-normal hearing, and elderly hearing impaired. The auditory filters of the subjects had been measured in earlier experiments using the notched-noise method, for center frequencies (fc) of 100, 200, 400, and 800 Hz. The DLFs for both impaired groups were higher than for the young normal group at all fc's (50-4000 Hz). The DLFs at a given fc were generally only weakly correlated with the sharpness of the auditory filter at that fc, and some subjects with broad filters had near-normal DLFs at low frequencies. Some subjects in the elderly normal group had very large DLFs at low frequencies in spite of near-normal auditory filters. These results suggest a partial dissociation of frequency selectivity and frequency discrimination of pure tones. The DLCs for the two impaired groups were higher than those for the young normal group at all fundamental frequencies (fo) tested (50, 100, 200, and 400 Hz); the DLCs for the elderly normal group were intermediate. At fo = 50 Hz, DLCs for a complex tone containing only low harmonics (1-5) were markedly higher than for complex tones containing higher harmonics, for all subject groups, suggesting that pitch was conveyed largely by the higher, unresolved harmonics. For the elderly impaired group, and some subjects in the elderly normal group, DLCs were larger for a complex tone with lower harmonics (1-12) than for tones without lower harmonics (4-12 and 6-12) for fo's up to 200 Hz. Some elderly normal subjects had markedly larger-than-normal DLCs in spite of near-normal auditory filters. The DLCs tended to be larger for complexes with components added in alternating sine/cosine phase than for complexes with components added in cosine phase. Phase effects were significant for all groups, but were small for the young normal group. The results are not consistent with place-based models of the pitch perception of complex tones; rather, they suggest that pitch is at least partly determined by temporal mechanisms.

Get free article suggestions today

Mendeley saves you time finding and organizing research

Sign up here
Already have an account ?Sign in

Find this document

Get full text

Authors

  • B C Moore

  • R W Peters

Cite this document

Choose a citation style from the tabs below

Save time finding and organizing research with Mendeley

Sign up for free